

May 2009

This product is designed to meet the needs of the Aquantia Corporation AQ1002 10GBASE-T Ethernet PHY Transceiver

- Pletronics' VHA6 Series is a voltage controlled crystal oscillator with a CMOS output.
- This model uses fundamental mode crystals with no multiplication circuits.
- Tape and Reel or tube packaging is available.
- 5x7 mm Ceramic LCC Package
- Voltage Control Function on pad 1
- Enable/ Disable Function on pad 2

Pletronics Inc. certifies this device is in accordance with the RoHS 6/6 (2002/95/EC) and WEEE (2002/96/EC) directives.

Pletronics Inc. guarantees the device does not contain the following: Cadmium, Hexavalent Chromium, Lead, Mercury, PBB's, PBDE's Weight of the Device: 0.2 grams Moisture Sensitivity Level: 1 As defined in J-STD-020C Second Level Interconnect code: e4

Absolute Maximum Ratings:

Parameter	Unit
V _{cc} Supply Voltage	-0.5V to +5.5V
Vi Input Voltage	-0.5V to V _{cc} + 0.5V
Vo Output Voltage	-0.5V to V _{cc} + 0.5V

Thermal Characteristics

The maximum die or junction temperature is 155°C

The thermal resistance junction to board is 60 to 100°C/Watt depending on the solder pads, ground plane and construction of the PCB.

May 2009

Part Marking:

PLE V6010	Legend:	
33.333M	PLE	= Pletronics
 YMDxG8 	33.333M	= Frequency in MHZ
	YMD	= Date of Manufacture (year, month and day)
	x	= production code

All other marking is internal factory code

Codes for Date Code YMD

Code	9	0	1	2	3	4	5
Year	2009	2010	2011	2012	2013	2014	2015

Code	Α	В	С	D	Е	F	G	н	J	к	L	М
Month	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC

Code	1	2	3	4	5	6	7	8	9	Α	В	С
Day	1	2	3	4	5	6	7	8	9	10	11	12
Code	D	E	F	G	н	J	к	L	М	Ν	Р	R
Day	13	14	15	16	17	18	19	20	21	22	23	24
Code	т	U	V	w	Х	Y	Z					
Day	25	26	27	28	29	30	31					

Package Labeling

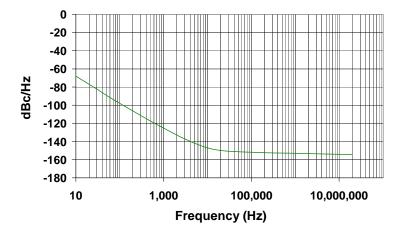
Label is 1" x 2.6" (25.4mm x 66.7mm) Font is Courier New Bar code is 39-Full ASCII (The P/N will be shown as VHA6010-33.333M)

Label is 1" x 2.6" (25.4mm x 66.7mm) Font is Arial

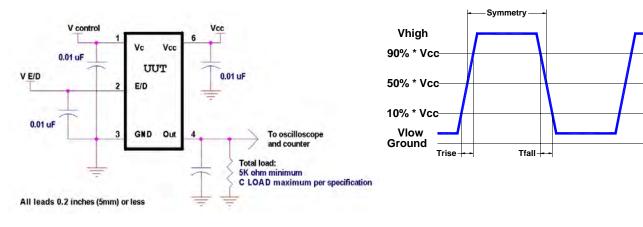
RoHS Compliant 2nd LvL Interconnect Category=e4 Max Safe Temp=260C for 10s 2X Max

ESD Rating

Model	Minimum Voltage	Conditions		
Human Body Model	1500	MIL-STD-883 Method 3115		
Charged Device Model	1000	JESD 22-C101		

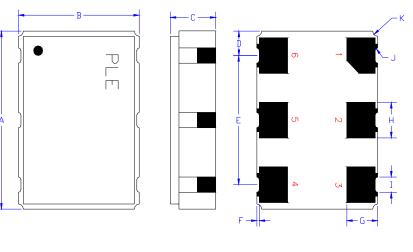

Electrical Specification for 3.30V ±10% over the specified temperature range

Item	Min	Тур	Max	Unit	Condition
Frequency		33.333	30 MHZ		
Frequency Accuracy	-50	0	+50	ppm	Vcontrol = 1.60V and over temperature, load and supply variations
Pullability (APR)	-65	-	+65	ppm	Absolute Pull Range, about Vcontrol = $1.60V$ ±0.80V includes the effect of temperature stability
Output Waveform		CN	105	_	
Output High Level	90	-	-	%	of V_{CC} for I_{OH} = +4 mA
Output Low Level	-	-	10	%	of V_{CC} for I_{OL} = -4 mA
Output Short Circuit Current	-50	-	+50	mA	
Output T_{RISE} and T_{FALL}	-	4.0	6.0	nS	10% to 90% of V_{CC} , C_{LOAD} = 15 pF
Output Symmetry	45	50	55	%	at 50% point of V_{cc} (See load circuit)
Vcontrol Resistance Pin 1	2	-	-	Mohm	
Modulation Bandwidth	15	20	-	KHz	Vcontrol = 1.60V <u>+</u> 1.0V, -3dB
Modulation Linearity	-10	-	+10	%	Vcontrol = 1.60V <u>+</u> 1.0V, -3dB
E/D Internal Pull-up	50	-	-	Kohm	to V _{cc}
V disable	-	-	15	%	of V_{cc} applied to pin 1
V enable	85	-	-	%	of V_{cc} applied to pin 1
Output leakage V _{OUT} = V _{CC}	-10	-	+10	uA	Pin 1 low, device disabled
V _{OUT} = 0V	-10	-	+10	uA	
Enable time	-	-	250	nS	Time for output to reach a logic state
Disable time	-	-	250	nS	Time for output to reach a high Z state
Start up time	-	1.5	10	mS	Time for output to reach specified frequency
Supply Current	-	4.0	7.0	mA	C _{LOAD} = 15 pF
Operating Temperature	-10		+70	°C	Defined by part number
Storage Temperature Range	-55		+125	°C	


Specifications with Pad 2 E/D open circuit

Typical phase noise plot for 5 oscillators at different output frequencies.

Load Circuit and Test Waveform


Reliability: Environmental Compliance

Parameter	Condition
Mechanical Shock	MIL-STD-883 Method 2002, Condition B
Vibration	MIL-STD-883 Method 2007, Condition A
Solderability	MIL-STD-883 Method 2003
Thermal Shock	MIL-STD-883 Method 1011, Condition A

May 2009

Mechanical:

Gold 11.8 µinches 0.3 µm minimum over Nickel 50 to 350 µinches 1.27 to 8.89 µm

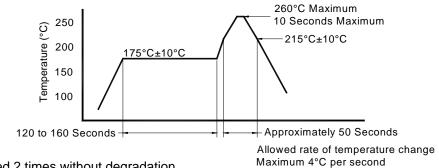
-	- G - > -
' Ту	pical dimensions

Not to Scale

	Inches	mm
А	0.276 <u>+</u> 0.006	7.00 <u>+</u> 0.15
В	0.197 <u>+</u> 0.006	5.00 <u>+</u> 0.15
С	0.073 <u>+</u> 0.012	1.87 <u>+</u> 0.30
D ¹	0.038	0.96
E ¹	0.200	5.08
F ¹	0.004	0.10
G¹	0.050	1.27
H ¹	0.055	1.40
l ¹	0.024	0.60
J^1	0.004R	0.10R
K ¹	0.008R	0.20R

Pad	Function	Note
1	Vcontrol Input	
2	Output Enable/ Disable	When this pad is not connected, the oscillator shall operate When this pad is logic low, the output will be inhibited (high impedance state) Recommend connecting this pad to V_{cc} if the oscillator is to be always on
3	Ground (GND)	
4	Output	
5	N.C.	No Internal connection, pad may be connected to ground or $\rm V_{\rm cc}$
6	Supply Voltage (V _{cc})	Recommend connecting appropriate power supply bypass capacitors as close as possible.

Layout and application information


For Optimum Jitter Performance, Pletronics recommends:

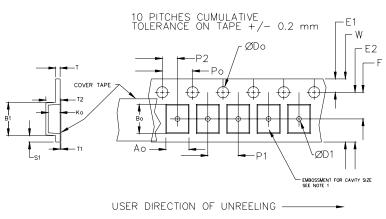
- a ground plane under the device
- no large transient signals (both current and voltage) should be routed under the device do not layout near a large magnetic field such as a high frequency switching power supply
- do not place near piezoelectric buzzers or mechanical fans.

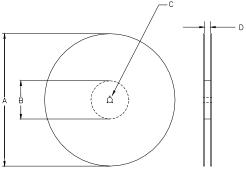
May 2009

Reflow Cycle (typical for lead free processing)

The part may be reflowed 2 times without degradation.

Tape and Reel: available for quantities of 250 to 1000 per reel


Dimensions in mm


Not to scale

	Constant Dimensions Table 1										
Tape Size	D0	D1 Min	E1	P0	P2	S1 Min	T Max	T1 Max			
8mm		1.0			2.0						
12mm	1.5	1.5	1.75	4.0	<u>+</u> 0.05						
16mm	+0.1 -0.0	1.5	<u>+</u> 0.1	<u>+</u> 0.1	2.0	0.6	0.6	0.1			
24mm		1.5			<u>+</u> 0.1						

Variable Dimensions Table 2									
Tape Size	B1 Max	E2 Min	F	P1	T2 Max	W Max	Ao, Bo & Ko		
16 mm	12.1	14.25	7.5 <u>+</u> 0.1	8.0 <u>+</u> 0.1	8.0	16.3	Note 1		

Note 1: Embossed cavity to conform to EIA-481-B

		REE				
А	inches	7.0	10.0	13.0		
	mm	177.8	254.0	330.2		
в	inches	2.50	4.00	3.75		
	mm	63.5	101.6	95.3	Tape Width	
с	mm	1:	width			
D	mm	16.4 +2.0 -0.0	16.4 +2.0 -0.0	16.4 +2.0 -0.0	16.0	

Reel dimensions may vary from the above